top of page

Subscribe to get the latest updates from Receptiviti

Identifying Potentially Fraudulent Utterances in Earnings Calls

This study explores the potential of automated linguistic and vocalic analysis tools to identify potentially fraudulent utterances in corporate earnings conference calls. the researchers examine the language and vocal characteristics of restatement-relevant utterances that were prepared (presentation) or unprepared (Q&A) responses. The study finds that restatement-related utterances differ significantly on many vocal and linguistic dimensions, suggesting the value of such analysis tools in detecting potential fraud.

This research highlights the importance of language and vocal analysis in identifying fraudulent utterances during corporate earnings conference calls. The study demonstrates that automated analysis tools can effectively differentiate between restatement-relevant and non-relevant utterances based on distinct linguistic and vocal features. The findings suggest the potential for these tools to improve fraud detection in corporate settings, particularly when analyzing unscripted responses.

Read the research: Which Spoken Language Markers Identify Deception in High-Stakes Settings? Evidence From Earnings Conference Calls

Subscribe to the blog and get notified of new content:

Customer Stories

Customer Stories and Use Cases

Organizations of all sizes have integrated Receptiviti into their technologies and processes to uncover critical insights about the people who matter to their businesses.